Extensions 1→N→G→Q→1 with N=C8 and Q=C23

Direct product G=N×Q with N=C8 and Q=C23
dρLabelID
C23×C864C2^3xC864,246

Semidirect products G=N:Q with N=C8 and Q=C23
extensionφ:Q→Aut NdρLabelID
C8⋊C23 = C2×C8⋊C22φ: C23/C2C22 ⊆ Aut C816C8:C2^364,254
C82C23 = C22×D8φ: C23/C22C2 ⊆ Aut C832C8:2C2^364,250
C83C23 = C22×SD16φ: C23/C22C2 ⊆ Aut C832C8:3C2^364,251
C84C23 = C22×M4(2)φ: C23/C22C2 ⊆ Aut C832C8:4C2^364,247

Non-split extensions G=N.Q with N=C8 and Q=C23
extensionφ:Q→Aut NdρLabelID
C8.1C23 = C2×C8.C22φ: C23/C2C22 ⊆ Aut C832C8.1C2^364,255
C8.2C23 = D8⋊C22φ: C23/C2C22 ⊆ Aut C8164C8.2C2^364,256
C8.3C23 = D4○D8φ: C23/C2C22 ⊆ Aut C8164+C8.3C2^364,257
C8.4C23 = D4○SD16φ: C23/C2C22 ⊆ Aut C8164C8.4C2^364,258
C8.5C23 = Q8○D8φ: C23/C2C22 ⊆ Aut C8324-C8.5C2^364,259
C8.6C23 = C2×D16φ: C23/C22C2 ⊆ Aut C832C8.6C2^364,186
C8.7C23 = C2×SD32φ: C23/C22C2 ⊆ Aut C832C8.7C2^364,187
C8.8C23 = C2×Q32φ: C23/C22C2 ⊆ Aut C864C8.8C2^364,188
C8.9C23 = C4○D16φ: C23/C22C2 ⊆ Aut C8322C8.9C2^364,189
C8.10C23 = C16⋊C22φ: C23/C22C2 ⊆ Aut C8164+C8.10C2^364,190
C8.11C23 = Q32⋊C2φ: C23/C22C2 ⊆ Aut C8324-C8.11C2^364,191
C8.12C23 = C22×Q16φ: C23/C22C2 ⊆ Aut C864C8.12C2^364,252
C8.13C23 = C2×C4○D8φ: C23/C22C2 ⊆ Aut C832C8.13C2^364,253
C8.14C23 = C2×C8○D4φ: C23/C22C2 ⊆ Aut C832C8.14C2^364,248
C8.15C23 = Q8○M4(2)φ: C23/C22C2 ⊆ Aut C8164C8.15C2^364,249
C8.16C23 = C2×M5(2)central extension (φ=1)32C8.16C2^364,184
C8.17C23 = D4○C16central extension (φ=1)322C8.17C2^364,185

׿
×
𝔽